
VIBA-Net: A Multimodal Framework for Infant Behavior Annotation

William Ong
University of Washington

wong2@uw.edu

Sam Shin
University of Washington

seunguk@uw.edu

Raghav Ramesh
University of Washington

raghavtr@uw.edu

Abstract

Infant development research relies on careful observa-
tion of infant interactions with caregivers, toys, and audi-
tory stimuli. We propose VIBA-Net, a privacy-preserving
and computationally efficient model designed to analyze
video recordings of infant interactions. By combining facial
expression analysis, object detection, and audio analysis,
VIBA-Net efficiently classifies emotional states, behavioral
responses, and other key infant developmental indicators.
Trained and evaluated on a curated dataset of annotated in-
fant interactions, our model automates the annotation pro-
cess and provides valuable insights into early infant devel-
opment. VIBA-Net provides a comprehensive approach to
better understanding infant behavior, with potential appli-
cations in both research and developmental monitoring.

1. Introduction
The UW Institute for Learning and Brain Sciences (I-

LABS) analyzes videos of parent-infant interactions to bet-
ter understand early human development. These observa-
tions help describe how infants process music and speech,
how their experiences influence learning, and how early de-
velopment impacts future outcomes. The videos include
both auditory and non-auditory stimuli, such as physical
and verbal interactions with parents or surroundings, which
elicit various infant responses and emotional changes.

Due to HIPAA regulations and privacy concerns, exist-
ing high-accuracy LLMs cannot be adopted for such anno-
tation tasks. As a result, researchers must manually anno-
tate videos, a labor-intensive and time-consuming process
that often detracts from core scientific work.

To streamline this workflow, we propose automating the
annotation process. Our goal is to develop a lightweight
model that preserves high accuracy while being efficient for
real-time use—potentially through a mobile or desktop ap-
plication, where smaller models are preferred for ease of de-
ployment. The model will focus on extracting key features
related to the infant(s) in each video, including emotional
expressions, relevant objects, and audio cues.

2. Related Work

State-of-the-art multimodal large language models
(LLMs) are very effective at annotating variable-length
video input. However, their closed-source nature and data
retention policies conflict with HIPAA regulations. While
open-source models like Video-LLaMA and MiniGPT4-
Video avoid these issues, they demand significant computa-
tional resources, making the annotation process costly and
highly inefficient.

In the audio modality, there are three primary classifi-
cation approaches: thresholding, rule-based classification,
and machine learning-based classification. Each method of-
ten involves spectral analysis, where audio signals are visu-
ally represented as spectrograms that highlight the unique
patterns of audio events. Common spectral analysis tech-
niques include the Fourier Transform, which converts a
time-domain signal into a frequency domain, and Mel-
Frequency Cepstral Coefficients (MFCCs), which capture
the short-term power spectrum of sound [1]. Thresholding
involves classification based on whether a specific feature,
such as a spectral centroid, exceeds a predefined threshold
value [6]. Rule-based classification models are similar, but
combine multiple features (e.g., MFCCs, spectral centroid)
through a series of rules [8]. However, these methods are
only effective when the features are distinguishable and be-
long to simple, single-class events. In contrast, the machine
learning-based approach is significantly more flexible and
robust. With various implementations and architectures, it
can classify data featuring multiple audio classes or hard-
to-distinguish features. Since infant interactions often have
overlapping or varied audio events, we will follow the ma-
chine learning approach.

AudioSet is a key dataset for developing machine learn-
ing models for audio classification. The dataset in-
cludes over 2 million labeled video clips, along with 128-
dimensional audio features extracted at 1Hz [2]. These
features capture the high-level characteristics of each au-
dio segment, such as timbre, pitch, and rhythm, which help
distinguish different sound events. The features were ex-
tracted with Google VGGish, a CNN-based model inspired
by VGG and trained on a preliminary version of YouTube-



8M [4]. To optimize efficiency and scalability, we will
leverage these pre-trained features to build our classifica-
tion model for sound events related to infant interactions.

In the visual modality, emotion recognition from images
is a challenging task due to the subtlety and variability of fa-
cial expressions, as well as external factors like lighting and
occlusion. While popular Convolutional Neural Networks
(CNNs) like ResNet have demonstrated strong performance
by learning hierarchical and abstract features directly from
data, their large size and computational demands make them
impractical for our real-time applications [3]. This leads
to MobileNetV2, which offers a compelling balance be-
tween performance and efficiency [7]. Its use of inverted
residual blocks and linear bottlenecks facilitates efficient
feature reuse and gradient flow, while depthwise separable
convolutions significantly reduce computation and mem-
ory requirements. These design choices are well-suited for
real-time emotion recognition, especially in settings where
efficiency is important, such as at I-LABS. However, de-
spite being pre-trained on diverse datasets, MobileNetV2’s
lightweight architecture limits its ability to capture the fine-
grained emotional cues needed for high-accuracy emotion
recognition. As a result, we will explore how architec-
tural modifications and parameter tuning can improve Mo-
bileNetV2’s accuracy for emotion recognition in infants.

3. Methods
Designed to efficiently analyze audiovisual content and

extract meaningful annotations, our model will process each
input video through a three-stage pipeline: (1) fixed-rate
sampling, (2) parallel video and audio feature analysis, and
(3) feature aggregation for the final annotation.

The visual processing stream begins with uniform frame
sampling at 1 fps. We adopt this rate to reduce the over-
all frame count, thereby lowering computational demands
while retaining key visual cues.

We fine-tuned MobileNetV2 to predict babies’ emotions
from individual frames. Since MobileNetV2 was originally
trained on general images rather than baby faces, the base-
line model did not perform well, with an accuracy worse
than random guessing. In order to make the most use of our
limited dataset, we utilized an MTCNN to extract up to M
facial croppings from images. After this is done for each
image, they are batched for training. Additionally, we re-
placed the original output layer with a classification layer
that categorizes emotions into three emotion classes: calm,
laughing, and crying. However, due to the limited size and
diversity of our dataset, the model overfit to the training data
and demonstrated poor generalization. To mitigate this, we
introduced a dropout layer. After tuning the dropout prob-
ability, a rate of 0.3 was found to be optimal. Further anal-
ysis revealed that the primary issue was class imbalance,
with the dataset containing significantly more calm sam-

Figure 1. Fine-Tuned MobileNetv2 Architecture

ples compared to laughing or crying samples. To address
this, we augmented the crying and laughing classes using
techniques such as horizontal flipping, color jittering, and
slight rotations. We also experimented with the intensity of
the data augmentation. Excessive augmentation led to slow
convergence and poor training and validation loss, while in-
sufficient augmentation failed to reduce validation loss. The
optimal configuration was found to be horizontal flips with a
probability of 0.5, rotations of 5 degrees, and mild color jit-
tering with brightness, contrast, saturation, and hue. It was
found that a learning rate of 1e−4 and a batch size of 32 was
optimal for convergence . Additionally, we attempted using
class weights in the cross-entropy loss function to address
this imbalance. However, this approach proved to be less
effective than data augmentation, which had yielded better
performance improvements.

We fine-tuned YOLOv8n, the smallest model in the
YOLOv8 family, to efficiently detect people, estimate their
age category, and identify objects within each video frame.
To create the ground truth for object detection and bounding



box localization, we leveraged AWS Rekognition, a state-
of-the-art cloud based computer vision service. Rekog-
nition provided high confidence detections and bounding
box coordinates for each object of interest, which were
then reviewed and used to label our custom dataset. For
training, we adopted the YOLOv8n pretrained weights as
a starting point, prioritizing computational efficiency and
faster convergence. The dataset was formatted according
to the YOLO annotation schema, and training was config-
ured with the following hyperparameters: 100 epochs, an
image size of 640 pixels, batch size of 80, and the AdamW
optimizer with an initial learning rate of 0.01. To prevent
overfitting and enable early stopping, we set the patience
parameter to 20 epochs and performed training with two
data loading workers. All training was performed using the
Ultralytics YOLO framework on NVIDIA T4 16GB VRAM
GPU. Data augmentation techniques followed the YOLOv8
default settings, including random horizontal flips, scal-
ing, and color jittering to enhance generalization and ro-
bustness. The final fine-tuned model was evaluated on the
held-out validation and test splits, with precision, recall, and
mean average precision (mAP) calculated at an IoU thresh-
old of 0.5. This lightweight YOLOv8n configuration en-
abled rapid experimentation and inference, making it well-
suited for integration into our real-time VIBA-Net annota-
tion pipeline.

Figure 2. Example ground truth image frame

While fine-tuning YOLOv8n enabled the model to detect
new object classes that were not present in the original pre-
trained weights, the results reveal significant limitations im-
posed by the small size of our training dataset. As shown in
the figure below, the model’s validation losses remain high
and unstable, and both precision and mAP metrics are no-
tably low across epochs. These patterns suggest that the
model struggled to generalize, likely due to the limited di-
versity and quantity of labeled examples available for train-
ing. The lack of data is further reflected in erratic metric
curves and potential overfitting, particularly for underrep-
resented classes. Nevertheless, the fine-tuned model suc-
cessfully learned to recognize custom object categories spe-

cific to our annotation pipeline—categories that the original
YOLOv8n model was unable to detect. This demonstrates
the practical benefit of domain adaptation, but also high-
lights the need for a larger, more balanced training set to
realize robust, real-world performance.

Figure 3. YOLOv8n Training Curves: Loss and mAP over Epochs

In parallel, the audio processing pipeline extracts the au-
dio from the video, converts it to a mono track, and resam-
ples it to a standard 16 kHz frequency. The audio is then
segmented into 10-second intervals, with shorter segments
being zero-padded for consistency. Each segment is trans-
formed into a log-Mel spectrogram, from which the Google
VGGish model extracts 128-dimensional features for clas-
sification. The VGGish features are classified into 8 differ-
ent classes by our custom model, VGGishNet, whose archi-
tecture is shown in Fig. 4. The model includes a temporal
average pooling layer to compress time-series data and re-
duce computational overhead, followed by two hidden lay-
ers incorporating batch normalization, LeakyReLU activa-
tion, and dropout regularization. The final output layer pro-
duces a binary encoding for the presence or absence of each
sound class. The architecture, including layer sizes, num-
ber of hidden layers, activation functions, dropout rates,
and other hyperparameters, was optimized through exten-
sive tuning, using random search and accuracy curves as
the primary methods for hyperparameter selection.

The visual and audio outputs are then aggregated by
frame to generate the final output, which includes the num-
ber of people per-video, per-frame emotion labels, detected
object interactions, and identified audio events. The overall
model architecture is described in the following component
flows and shown in Fig. 5.

• Visual Stream: Video Frames → Pre-processing →
Fine-tuned MobileNetv2 → Emotion Annotations
Video Frames → Fine-tuned YOLOv8n → Detected
Objects Annotations

• Audio Stream: Audio Input → Pre-processing →
Google VGGish → VGGishNet → Audio Classifica-
tions

• Feature Aggregation: Visual Annotations + Audio



Figure 4. VGGishNet Architecture
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Figure 5. VIBA-Net Architecture

4. Experiments
4.1. Dataset

We collected and manually annotated 35 video clips of
parent-infant interactions, ranging from 10 seconds to 3
minutes in length. To standardize our pipeline inputs, every
clip is sampled at 1 frame per second, yielding between 10
to 180 frames per video (∼1,250 frames total). Annotations
conform to our defined JSON schema and include:

• Video metadata: file name, duration (s), frame rate,
and frame count

• People summary: total people, number of babies, and
number of adults

• Per-frame annotations: for each frame, a list of de-
tected people (unique IDs, type = {baby, adult}, emo-
tion ∈ {calm, happy, mad, upset, intrigued}, inter-
acted objects) and the set of all objects present

• Audio events: for each continuous segment, start/end
timestamps, event type (e.g. baby crying, music), and
an assigned confidence score

We partitioned the 35 clips into a 70/20/10 train, valida-
tion, test split, with 24, 7, and 4 clips in the training, val-
idation, and test sets, respectively. The test set is reserved
for the final evaluation (Sec. 4.4), the validation set is used
for hyperparameter tuning and early stoppage, and the train
split is used for model training.

VGGishNet also used the extracted VGGish features
from AudioSet, with approximately 300 training features
and 50 test features for each of the 8 classes, where classes =
{baby crying, baby laughing, music, singing, child speech,
male speech, female speech, lullaby}.

4.2. VGGishNet Tuning and Architecture Selection

We used random search to optimize VGGishNet’s ar-
chitecture and hyperparameters, including learning rate,
weight decay, batch size, dropout rate, hidden layer size,
and number of hidden layers. We chose random search over
grid search for its efficiency and flexibility in exploring a
more complex hyperparameter space. Random search can
achieve comparable or even better model performance with
fewer evaluations compared to grid search [5]. Out of 40
random architectures with 100 epochs and early stopping of
patience = 10, the best-performing configuration had 2 hid-
den layers with sizes 64 and 32, dropout rate = 0, weight
decay = 0.001, learning rate = 0.0001, and batch size =
64. This configuration achieved 91% accuracy on the test
set and 95% accuracy on the training set (Fig. 6). In ad-
dition, we experimented with different activation functions,
in which the LeakyReLU activation outperformed standard
ReLU, providing a 0.6% improvement in test accuracy and
over 2.3% improvement in training accuracy. We also tried
various models, including simple multi-layer perceptrons,



Figure 6. VGGishNet Training Plots

more complex CNNs with attention, and Bi-LSTMs with at-
tention, but none of the models outperformed the 2-hidden-
layer neural network. Lastly, we tested VGGishNet without
the temporal average pooling layer and observed no signif-
icant changes in accuracy. As a result, we decided to retain
it, as keeping the layer would reduce computational costs.

4.3. Hyperparameter Training

For VIBA-Net, we similarly used random search to op-
timize its performance. We used the validation set for all
tuning decisions and applied early stopping based on val-
idation loss to prevent overfitting. We tuned the learning
rate, batch size, and dropout rate. Each configuration was
evaluated using the following composite score:

Score = λ1 · Emotion Accuracy
+ λ2 · Audio Event F1
+ λ3 · Mean IoU (Object Detection)

with equal weights λi = 1.

4.4. Evaluation Protocol

To quantitatively compare our model against baselines
(e.g. CogVLM-17B, Gemini Pro), we measure annotation
accuracy via field-level matching between predicted and
ground-truth JSON:

Matching Rules

• Counts (total people, num babies,
num adults): exact integer match.

• Emotions: exact match within the emotion label set
• Objects: compare predicted and ground-truth ob-

ject sets using semantic similarity. A match
is accepted if the cosine similarity between their

text-embedding-3-large (OpenAI) embed-
dings is ≥ 0.75.

• Frame indices / timestamps: exact match at 1 fps
sampling

• Audio events: accept predictions with confidence ≥
0.5. Match to a ground-truth event if (i) types coincide
and (ii) temporal IoU ≥ 0.5

4.5. Results

We aim to perform better than the current state of the art
LLMs in latency and compute/memory usage.

Model Mem Lat Params Ppl F1 Obj F1 Cls Acc
(GB) (ms) (M) (%) (%) (%)

VIBA-Net 0.04 41 3.6 57.9 6.9 37.0
Qwen3B 12 41811 3000 60.9 10.5 84.6
Qwen7B 20 32886 7000 52.5 12.6 82.4
Qwen32B 80.0 75652 32000 61.2 10.4 52.5

Table 1. Detection and Classification Metrics.

Table 1 summarizes the detection and classification met-
rics across models, along with corresponding memory us-
age, latency, and parameter count. VIBA-Net achieves a
competitive people detection F1-score (57.9%) while main-
taining extremely low memory requirements and rapid in-
ference speed (41 ms per frame), significantly outperform-
ing large LLM-based models in computational efficiency.
Although object detection and classification accuracy re-
main lower compared to the Qwen models—reflecting the
limited size and diversity of the training data—VIBA-Net
demonstrates the ability to detect custom classes specific to
our application domain. These results highlight the trade-
off between accuracy and efficiency, as well as the practi-
cality of lightweight models for resource-constrained envi-
ronments.

MobileNetv2: Fine-Tuned Baseline
Calm Accuracy 0.9 0.0

Crying Accuracy 0.3 0.1
Laughing Accuracy 0.6 0.1

Table 2. MobileNetv2 Performance

To ensure that the fine-tuned MobileNetv2 model
generalized well, the model was tested on a set of random
public images totaling to nearly 10 % of the original
dataset. While the crying accuracy remained relatively low
due to a lack of good data surrounding crying emotions
in babies, the accuracy in accurately predicting calm and
laughing went up significantly from the baseline pretrained
MobileNetv2 model (Table 2).



5. Discussion
Given a video of parent-infant interactions, our model

will classify and annotate the video at various time steps,
including various stimuli (auditory and visual), along with
infant responses. We intend to assist the researchers at I-
LABS with our model, which will remain open-source to
respect privacy concerns. In addition, it will be efficient and
accurate, producing results that assist researchers in better
understanding early human development.

5.1. Limitations

It is important to note that our model may not generalize
well to all scenarios. Given the ethical considerations sur-
rounding the use of baby videos, our ability to collect clean
and relevant data was limited, resulting in a relatively small
dataset of just 35 annotated videos. Using videos was an
issue given that each frame in the video was highly corre-
lated to other frames, posing an overfitting issue. Addition-
ally, this constrained sample does not capture the full diver-
sity of real-world parent–infant interactions. Different cul-
tural contexts, lighting conditions, camera angles, or infant
ages could all affect model performance. Another limita-
tion lies in the annotations themselves. Although each video
was labeled by a human, manual labeling is inherently time
consuming and prone to occasional inconsistencies or over-
sights, particularly for subtle or ambiguous emotional ex-
pressions. Moreover, our pipeline currently treats audio and
visual streams separately before aggregation, which may
overlook fine grained audio–visual correlations. Integrated
training could better align these modalities. Our fixed 1 fps
frame sampling simplifies computation but may miss brief
events suggesting that future work should explore adaptive
or higher-frequency sampling strategies.

6. Conclusion
In this work, we present VIBA-Net, a lightweight, mul-

timodal annotation framework tailored for analyzing infant-
caregiver interactions. Our system integrates fine-tuned
MobileNetv2 for facial emotion recognition, YOLOv8n for
object and person detection, and VGGishNet for audio
event classification. Despite the constraints of limited data
and real-world variability, VIBA-Net demonstrates compet-
itive performance in people detection while maintaining ex-
ceptional efficiency by more than a magnitude and privacy
compliance. By automating video annotation through a
modular pipeline, our framework offers a scalable tool to
support infant development research and opens new possi-
bilities for accessible behavioral analysis across diverse set-
tings. Future work will focus on improving generalizability
through larger datasets and integrated audio-visual training
strategies, paving the way for a more practical deployment
in clinical or research settings.
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